Module 2

- 1. Erosion Theory -
- 2. Planning for Effective Erosion and Sediment Control
- 3. Selecting the Correct BMP

Erosion Can Be Beautiful.....

But not on your project site!

Definitions

🗸 Erosion

- Sediment
- Sedimentation
- Turbidity

Turbidity entering Sulphur Creek from Union Pacific Railroad, Redding, CA

 Soil erosion is the physical process by which soil particles become detached by water, wind, or gravity

Is the Product of erosion

Sediment can be suspended or moved as bedload

Seditmentation

Deposition of eroded material

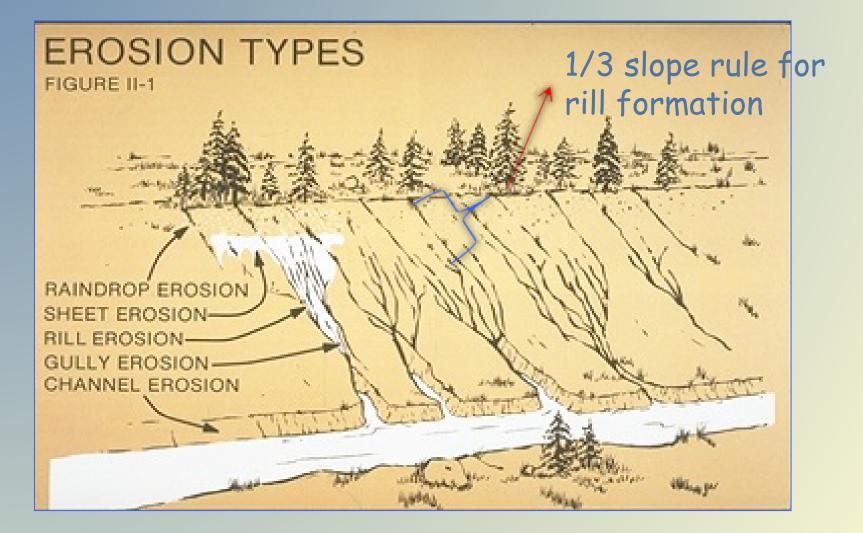
Turbidity

- Turbidity is a measure of the degree to which the water looses its transparency due to the presence of suspended particulates
- The more total suspended solids in the water, the murkier it seems and the higher the turbidity

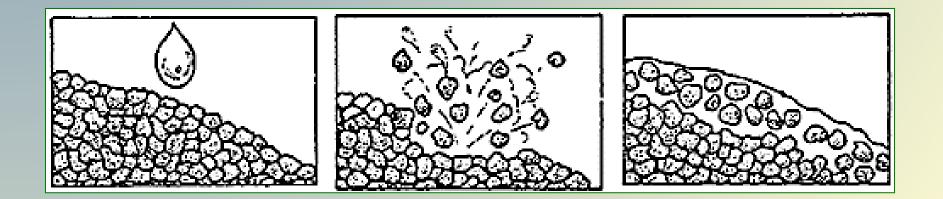
Turbidity

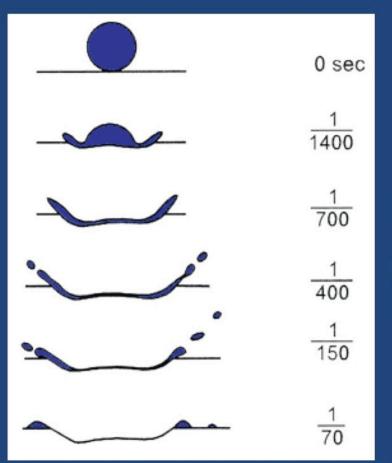
- Turbidity is measured in Nephelometric Turbidity Units (NTUs)
- The instrument used for measuring it is called nephelometer or turbidimeter.

Types of Erosion


- Raindrop (Splash) Erosion
- Sheet Erosion (Overland Flow)
- Rill Erosion
- Gully Erosion
- Channel Erosion
- Wind Erosion

Concentrated Flow



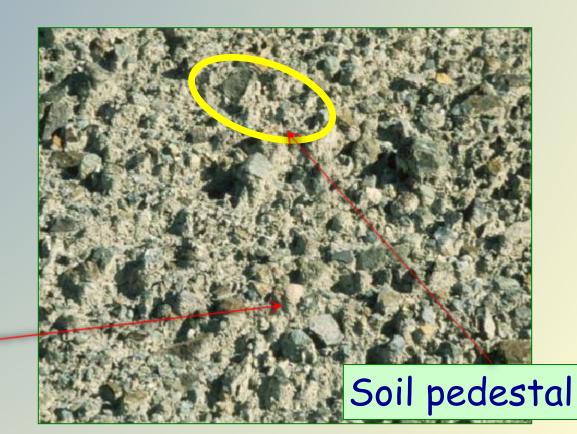


Raindrop Erosion

- Also called Splash erosion
- Rain drops striking bare soil directly
 - Detaches soil particles
 - Particles can then be transported by the action of water and/or wind

Raindrop Impact

+ Surfaces become "puddled"
+ Lower infiltration rates
+ Increased runoff
= Increased Turbidity



Source: Environmental Soil Physics, Hillel

Raindrop Erosion

Factoid - The loss of 1/2" soil over 1 acre = 907!

- Raindrop Erosion Primary source of erosion energy
 - Raindrop erosion is often imperceptible
 - Indicators are
 - Pedestals
 - Stains
 - Gravelling or
 Lag

Sheet Erosion

- The removal of a uniform thin layer of soil by raindrop splash and sheet erosion
- Surface film of water 2-3 mm deep

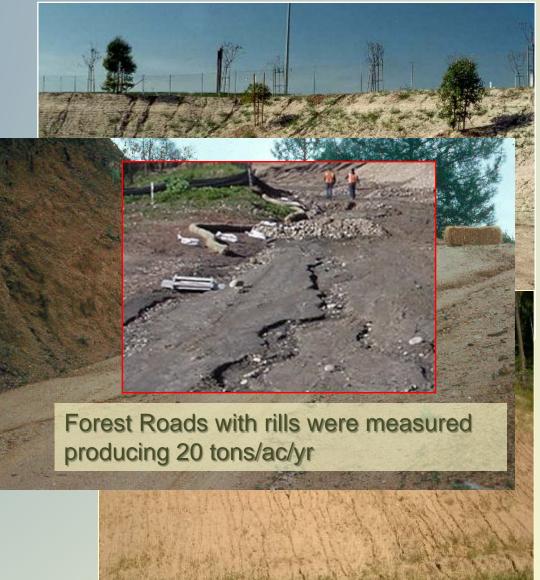
A Real Redding Experience

Home Depot and Barnes & Nobles stores will not be built for 2 years



Sediment control was relatively ineffective on this site....

Temporary straw mulching proved to be most effective.


if you were responsible for the SWPPP and sampling and monitoring Which approach would you take ?

"Shiny" Dirt is Sheet Flow

Rill Erosion

- Shallow surface flows that converge
- Increased velocity and turbulence.
- Well-defined tiny channels
- The rate of rill erosion can be approximately 100 X greater than sheet erosion

Gully Erosion

- Accumulating runoff becomes concentrated and forms small rills throughout the soil
- Several rills may coalesce to form Gullies
- The rate of gully erosion can be approximately 100
 X greater than rill erosion (2000 t/ac/yr)

Gully Erosion

Key Point – Gully and Rill erosion are caused by concentrated flows. Always treat the "problem" first – not the symptom.

Channel Erosion

- Results from:
 - Increased volume
 - Velocity
 - Duration of flow
 - Concentration of flow

 Channel erosion occurs in areas where tributaries, storm drains or culverts flow into unprotected channels

Channel Erosion

Channel Incision Channel Entrenchment

Urbanization results in increases of impervious surfaces, which is reflected in incised and degraded stream channels

Wind Erosion

- Most common in arid and semi-arid regions, but can occur in any region during construction
- Occurs when wind is 8 mph above dry, bare ground
- Fine particles become suspended, coarser particles bounce and slide

Wind Erosion Control

 Control system for wind erosion work in one of two ways:

- Form a new, less erodible soil surface
- Reduce wind speed on the soil surface

Wind Erosion Control

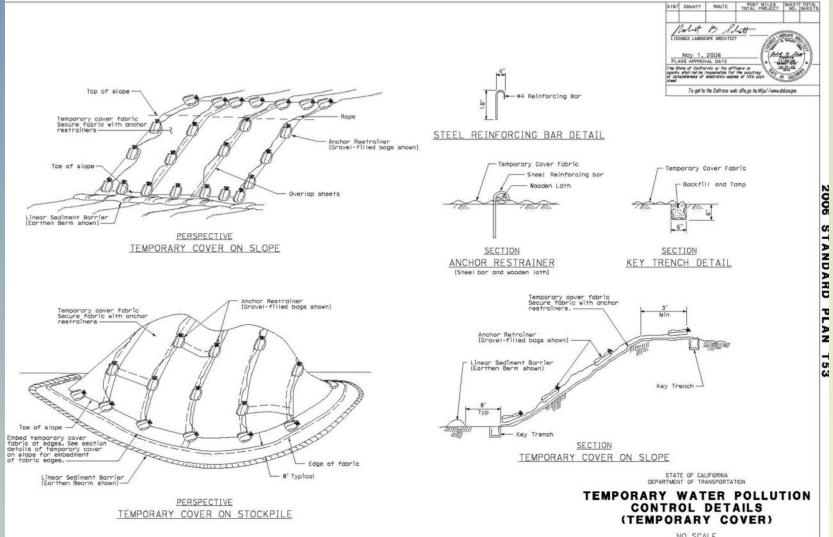
- Form a new, less erodible soil surface
 - Apply water to compact and weight the soil surface
 - Apply dust palliatives, binders, tackifiers, and/or hydromulch
 - Establish vegetation



Wind Erosion Control

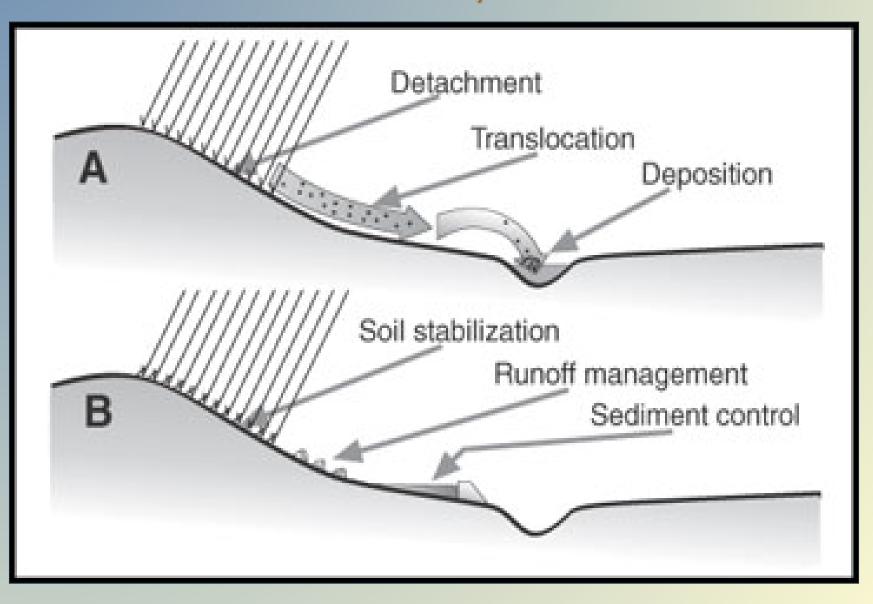
Reduce wind speed on the soil surface

- Cover the piles with wind-impervious fabric or geotextile
- Change the pile orientation and shape



Wind Erosion Control (and Stockpile Management)

- Consider specifying and using woven geotextiles
- They can be used over and over plastics go to landfill
- They can be anchored with pins / workers can walk on
- Woven geotextiles are semi-permeable less runoff


SS-7 Temporary Erosion Control Blanket/Temporary Cover (Plastic Covers) (SSPs 07-390 and 07-395)

NO SCALE

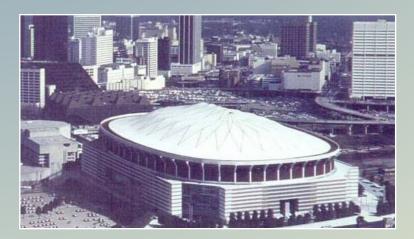
Erosion Control Principles

Planning for Effective Erosion Control

- Planning Strategies Rules of Thumb
- Why do BMPs fail ?
- How to select appropriate BMPs

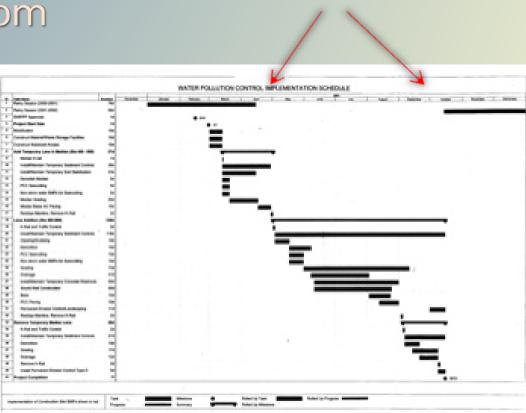
Erosion Control Strategies DSA = Disturbed Soil Area

- Prevent storm water contact with the construction site
- Limit amount of disturbed soil areas (DSAs)
- Protect (DSAs) from erosion
- Minimize sediment in storm water before leaving the site
- Prevent storm water contact with other pollutants



Non-Stormwater / Housekeeping BMPs

Prevent Storm Water Contact With The Construction Site


- Storm water from the sky - Rainfall
- Storm Water from adjacent areas - Runon

Prevent Storm Water Contact With The Construction Site

 Scheduling is a BMP that is practicable to protect DSAs from rainfall

Rainy Season

Scheduling - What is optimum grading period

- Optimum grading period is the non-rainy season, particularly for the critical areas.
- If grading extends into rainy season, minimize the length of time that soils are exposed, and the total area of exposure.
- Materials used for erosion and sediment control should be on site at all times during the rainy season.
- Consider phases of construction
 - Clearing, grading, trenching, vertical

Limit the Amount of DSA (Disturbed Soil Area)

- Limit the amount and duration that DSAs are exposed to rainfall impact, run-on and runoff and wind
- Implement temporary control practices on nonactive DSAs prior to the onset of precipitation

- How much area Can be feasibly covered or treated if storms come?
- 100 ac too much!!

Limit the Amount of DSA (Disturbed Soil Area)

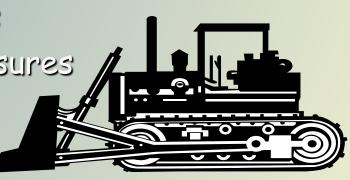
- What are some tools (BMPs) you might use to Minimize DSA?
- Do not mass grade
 think about
 phasing

- Think Stabilization!
- Apply compacted aggregate road base asap ?

Phased Construction

And the use of Temporary Surface Stabilization

Scheduling / Phasing


- This DOT requires Erosion Control after each 2 m "lift"
- CalTrans permit requires 55 for disturbed soil areas after 20 days of inactivity and 17 acres DA
- Alberta DOT requires stabilization after 4 km of highway

 Any examples from your area ?

Schedule for Grading and Construction

- Recommended Sequence of Events that assure Effective Erosion and Sediment Control:
 - Stabilize Construction Access
 - Install Sediment Control Measures
 - Install Runoff Control
 - Land Clearing and Grading
 - Soils Stabilization
 - Roadway/Structure Construction
 - Highway Planting and and Final Stabilization

Protect Disturbed Soil Areas From Erosion

- BMPs to protect DSAs from erosion are:
 - Temporary soil stabilization
 - Top of slope dikes or Gravel bag Berms
 - Slope drains
 - Rolls or Corrugated Plastic Pipe

Minimize Sediment In Storm Water Before Leaving Site

- Sediment Barriers
 - Silt Fence
 - Gravelbag barrier
 - Buffer strips
 - Fiber Rolls
- Sediment/Desilting Basins and Sediment Traps
- "Site Containment"

In Summary

- Minimize the length of time that soils are left exposed.
- Reduce the total area of exposed soil during the winter season.
- Protect critical areas such as drainage channels, streams, and natural watercourses.
- Stabilize exposed areas quickly.

Special Topics In Erosion Contd.

Today we will also cover

- Jr. Raindrop
- The Caltrans
 - Experience
- Continuity Equation and Check dams

- Myth Busting
- Filter Fabrics Do they "filter"?
- Perimeter Controls

Perimeter Controls -

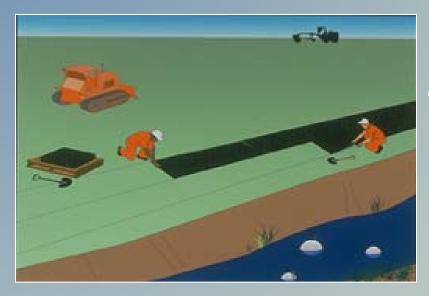
- Make sure your solution is not the problem
- Incorrectly applied perimeter control can actually increase erosion
- For example: Silt fence should not be installed up and down slope

Perimeter Controls -

- This, ≤1acre site had silt fence installed around the "perimeter"
- The fence effectively collected the sediment-laden water, directed it to lowest point – then failed

 Then became Office Depot!

Note to Self !!


- Can a sediment pond, with an embankment made from stakes and filter fabric hold and contain the runoff from 1 ac??
 Probably NOT
- What might be a better approach?
- Brainstorm with me!!

Perimeter Control

Perimeter Controls

Silt Fence as a Perimeter Control around the entire site is probably not an effective strategy. And maybe a gross waste of \$\$.?

Vegetated Filter Strip (GOOD)

Leave a Buffer Strip

ADVANTAGES

- Shields soil surfaces from rainfall impact
- Root systems reduce erosion by holding soil in place.
- Reduces runoff velocities and helps drop out sediment.
- Maintains the soil's capacity to absorb water
- Maybe avoid installing silt fence

EP-3 Minimize Disturbance and Buffer Strip

- Natural vegetative cover on project sites and vegetative strips along waterways are retained as much as possible
- Soil disturbance is limited to areas immediately needed for construction
- A healthy dense buffer strip can:
 - Greatly reduce the need for alternative sediment control barriers such as silt fence/fiber rolls
 - Filter polluted sheet flow from exposed soil areas

According to a 2002 Caltrans Study of highway shoulders, a 6 foot-wide grass buffer strip removed approximately 85% of pollutants and suspended sediment from contaminated highway runoff.

Perimeter Controls

 44% to 88% TSS removal rates by 2-3 m of existing vegetative area

EVALUATION OF STORM WATER TREATMENT BY VEGETATED AREAS ADJACENT TO HIGHWAYS, 2003, Misty Scharff, et.al.

Why Do BMPs Fail to be effective?

- 1. The wrong practice was chosen for the type of control needed and/or located wrong- incorrect Application
- 2. The practice was not installed properly inadequate Installation
- The practice was not inspected nor maintained – not Maintained

Take **AIM**

BMP Selection

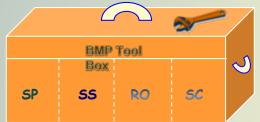
 It helps to distinguish between or categorize the types of controls needed

- EARTHWORKS / SOIL PREPARATION It is important to prepare, de-compact, rip, roughen...
- EROSION CONTROL raindrop and sheet erosion processes
- RUNOFF CONTROL flowing water, measures which resist the tractive forces of flowing water
- SEDIMENT CONTROL always requires the ponding of water to separate sediment from water

BMP Tool Box

Choose the correct BMP for the type of control needed

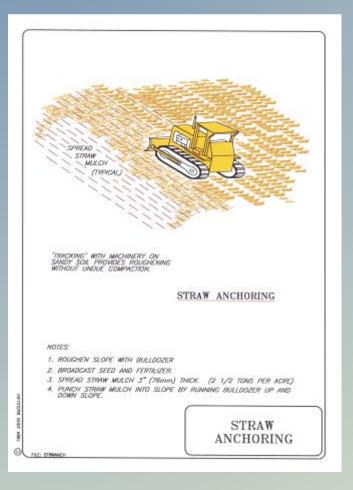
 If you choose from the correct category you'll have an effective BMP


Mulch or Cover for Raindrop Impact

Name some that you like

- Straw Mulch
- ECBs

HydromulchCompost Blankets


Sometimes combining tool from the categories provides the **BEST** erosion Control

Effective Combination - Free Tip

Track Walking = 52% reduction

Straw Mulching = 90 % erosion effectiveness

Effective Combination - Free Tip

90% + 52% = 148% reduction in erosion rates!!

The soil "falls" back onto the slope !!



Planning for Effective Erosion Control

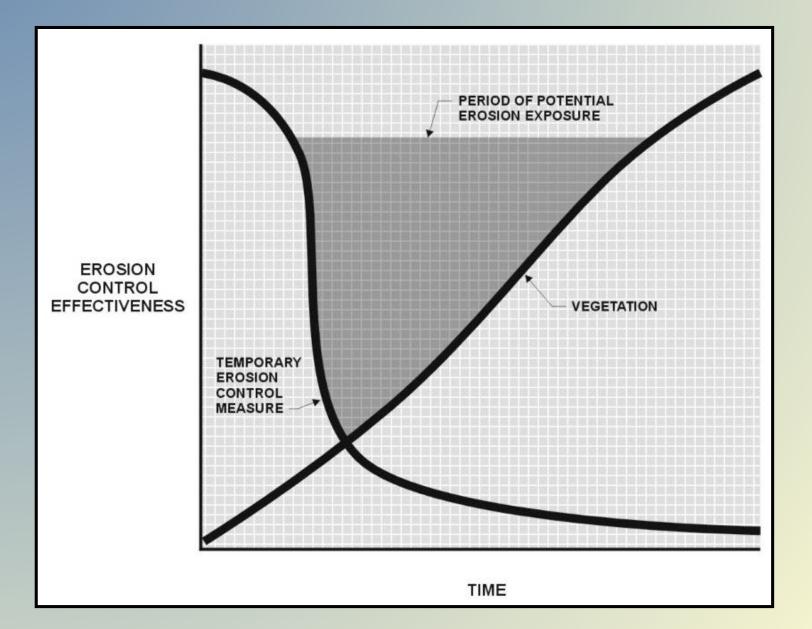
How to select appropriate BMPs

Table 8-2 EROSION AND SEDIMENT CONTROL BMPs INSTALLED COSTS AND EFFECTIVENESS							
800	Unit Cont Installed	Entimated Relative Erasina/ Sediment Control Effectiveness					
Sediment Control	•	ł					
Sit Fence	\$1.50 – 2.00 per lineal foot	UNK					
Fiber Rolls	\$1.50 – 2.00 per lineal foot	58%					
Eracion Control	-	-					
Festilizer	\$450 – 550 per acre	NA					
Secting	\$870 - 2,170 per acre	50%					
Sulurizina	\$2 200 per acre + cost of stolors	90%					
Hydraulic Malching	\$900 – 1,200 per acre	50 - 60%					
Ormost Application	\$900 - 1,200 per agre	40 - 50%					
Straw Malching	\$1,800 - 2,100 per acre	90 - 95%					
Suil Finders							
Plant Material-Based (Short-Term)	\$700 - 900 per acre	60 - 65%					
Plant Material-Based (Long-Term)	\$1.200 – 1.500 per agre	60 - 65%					
Polymeric Emulsion Blends	\$700 – 1,500 per acre	30 - 70%					
Petroleum Resin-Based	\$1,200 - 1,500 per acre	25-20%					
Cementitious Binder-Based	\$800 – 1,200 per acre	60 - 65%					
Bunded Fiber Matrices	\$5,000 – 6,500 per acre	90 - 95%					
Rolled Erasion Control Products							
Ei odesmada ble							
	\$6,000 – 7,000 per acre	65 - 70%					
Curied Wood Fiber	\$8,000 - 10,500 per acre	65 - 90%					
Strew	\$8,000 - 10,500 per acre	65 - 90%					
Wood Fiber	\$8,000 - 10,500 per acre	65 - 90%					
Commut Fiber	\$13,000 - 14,000 per acre	90 - 95%					
Commut Fiber Net	\$30.000 - 33.000 per acre	65 - 90%					
Straw Commut	\$10,000 - 12,000 per acre	90 - 95%					
Nor-Godeoradable		D.M					
Plastic Netting	\$2,000 - 2,200 per apre	< 50 %					
Plastic Mesh	\$3,000 - 3,500 per agre	75-60%					
Synthetic Fiber willetting	\$34,000 - 40,000 per acre	90 - 95%					
Banded Swithelin Fibers	\$45,000 - 55,000 per acre	90 - 95%					
Combination Swithetic and Biodeonadable Fibers	\$30,000 - 36,000 per arre	65 - 90%					

Source: Erosion Control Pilot Study Report, URS Greiner Woodward Clyde, June 2000, Table 4-1

Erosion Control BMP Selection Criteria

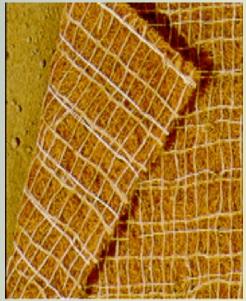
		TEMPORARY SOIL STABILIZATION CONTROL CRITERIA													
	I PCC														
LOST	and Effec [.]		er	1e:	NOR .		(ing Tinse (hns)	sness (drys)	12	3	ling				too
CLASS	TYPE	rtscedent Mai	vilatily.	see of Clean-U	statiod Cost Por	lipspela	angth of Dryin	me to Blectver	C Effectivenee	Apadas	tode of Applicat	lesidual Impact	athe	unof Efloct	Verse Quality Import
ATEGORY:	STANDARD BIODEGRADABLE MULCHE	2/SBM	1 2	6	2	0		F	0	3	2	02	2	II.	5
	Wheat Straw	D	8	н	82,100	в	0	1	90.95	M	LM	M		+	
itraw Mulch	Rice Straw	D	5	H	\$2,100	8	0	1	90-95	M	L/M	M		+	
Vood Fiber Mulch	Wood Fiber	D	8	н	\$900	в	0-4	1	50-60	M	H	L	S	+	
Recycled Paper Auton	Cellulose Fiber	D	8	н	\$900	в	0-4	1	90-60	8	н	L		+	
ionded Fiber Matrix	Błodegradable	D	5	H	\$6,000	D.	12-18	1	90-95	M	H	- M		+	
ATEGORY:	ROLLED EROSION CONTROL PRODUCT	18 (RECP									_				
20000000000000000000000000000000000000	Jule Mesh	D	8	н	\$8,500	в	0	1	65-70	M	L	M		+	
	Curied Wood Fiber	D	- 5	н	\$10,500	X	0	1	85-90	M	L	M	1.1	+	
	Biraw	D	8	н	000,88	B	0	1	85-90	M	L	M	1	+	
Siodegradable	Wood Fiber	D	5	H	\$8,900	X	0	1	90-95	M	L	M		+	
8	Coconut Fiber Coconut Fiber Mesh	0	8	H	\$13,000 \$31,000	B	0	1	85-90	L	L	- M	1000		
		-	-				-	1	-	L	L	-		+	
	Straw Cocorut Plastic Netling	D	S M	H	\$11,000	P	0	1	90-95			H	-	+	UNK
Second and the second second	Plastic Mesh	D	M	H	\$3,300	P	0		75-80	L	L.	H		+	LINK
4on-Biodegradable	Synthetic Fiber with Netting	D	M	н	\$86,000	P	0	1	90-95	-	1	H		+	UNK
to rundelle en ante	Bonded Synthetic Fibers	D	M	H	\$121,000	10	0	1	90-95	L	L	H		+	UNK
	Combination with Biodegradable	D	M	н	\$79,000	P*	0	1	85-90	L	L	H	1 I.	+	UNK
CATEGORY:	TEMPORARY SEEDING (TS)	10.0				S. 9	1021 - 1								
	Ornamontal species	1.5. m.m.)+	8-M	н	\$1000 - \$4000		0-4	28	50-60	M-L	н	L-M	NE	+	UNK
ligh-Density	Turf species	100000000	<u>s</u>	н	\$900		0-4	28	50-60	L	н	M-H	NE	+	UNK
	Bunch species	1.000	8-M	H	8750 - 83200		0-4	28	50-60	L	н	L-M	N	+	UNK
ast-Growing	Annual	10.000	- 9	н	\$900 - \$1,600		0-4	28	50-60	L	н	L-H	NE	+	UNK
are croming	Perennial	1.000	8	н	8800 - 82000		0-4	28	50-60	L	н	M	NE	+	UNK
ion-Competing	Nativo		S-M	H	\$700 - \$4000		0-4	28	50-60	L	H	L-M	N	+	UNK
	Non-Native Cereal Grain		8-M	H	\$1000 - \$1200 \$1,200		0-4	28	50-60	-	H	L-H	E	+	UNK
Serlie SATEGORY:	IMPERVIOUS COVERS (IC)		a	н	\$1,200	_	0-4	28	50-60	L	н	L		+	LINE
the second se	Visqueen	_	9	н	\$17,000	P	_		100	M	L .	н			LINK
Anstic	Woven Geotestie	-	5	H	\$14,000	P		1	90-95	M	L	H		-	UNIC
CATEGORY:	HYDRAULIC SOIL STABILIZERS (HSS)							-				-			
	Guar	D	5	н	\$1,000	8	12-18	-	80-85	9	8	L	Sec. 19	0	M
PBS) Plant Material Sased- Short Lived	Psyllum	PP	8	н	\$1,000	в	12-18		30-35	M	В	L			L
samed- chort Lived	Starches	D	8	н	\$1,000	в	9-12		. (Pr.	8	н	L	10 and	1P	- Ib
PBL) Plant Material Sased- Long Lived	Pitch/ Rosin							Time (he							
		D	8	M	\$3.000	8	19-24	P	60-65	M	В	M	1.11		M
	Actylic polymers and copolymers	D	8	M	\$3,000	P/C	19-24	Orying	60-70	-	B	M	-	-	
PEB) Polymeric	Methacrylates	D	M	M	\$1,000	P/C P/C	12-18	8	30-70	9	W	L L		1P +/-	IP M/L
imulsion Blends	Na acrylates Polyacrylamide	D	M	M	\$1,000	PVC	4-8	4	30-70	M	H	-	-	+/-	IP IP
	Hydro-colloid polymers	6	M	H	\$1,000	P/C	0-4	f	35-40	M	H	1		+	M
PRB) Petroleum/ Resin- Based	Petroleum Resin	D	M	1	\$3,000	PIC	0-4	as Le	15-20	M	8	M			н
CBB) Comentitious linder- Based	Gypsum	D	s	M	\$2,000		4-0	Same	80-85	M	н	L	80. B		н


Erosion Control BMP Selection Criteria

CLASS CATEGORY:	TYPE STANDARD BIODEGRADABLE MUI	Children Mosture	Prolitically	Ease of Clean-Up	Installed Cost Per Acre	Cregrodability	Length of Drying Time (hrs)	Time to Photometers (1994)	EC Effectiveness (%	
Strew Mulch	Wheat Straw	D	8	н	82,100	в	0	1	90-95	T
	Rice Strew	D	5	14	\$2,100	B	0	1	90-95	
Wood Fiber Mulch	Wood Fiber	D	8	н	\$950	в	0-4	1	60-60	P
Recycled Paper Muloh	Cellulose Fiber	D	s	н	2900	в	0-4	1	50-00	
Bonded Fiber Matrix	Biodegradable	D	8	н	56.000	в	12-18	1	90-95	-
CATEGORY:		OUCTS /RECP								1
	Jule Mesh		8	H	88.500	B	0 1	1	85-70	-
	Curled Wood Fiber	D	5	H	\$10,500	х	0	- 1	85-90	T
Eiodegradabie	Straw	D	8	н	88.900	в	. 0	1	85-90	-
	Wood Fiber	D	5	H	\$8,900	X	0	1	85-90	-
	Coconut Fiber	D	8	н	\$13,000	в	0	1	90-95	T
	Coconut Fiber Meah	D	5	H	\$31,000	B	0	1	85-90	T
	Straw Coconut	D	8	H	\$11,000	В	0	1	90-95	
Non-Biodegradable	Plastic Netting	D	M	н	\$2,000	p-	0	1.1	-50	
	Plastic Mesh	D	M	14	\$3,300	P	0	1	75-00	T
	Synthetic Fiber with Netting	D	М	H	\$86,000	P	0	1	90-95	
	Bonded Synthetic Fibers	D	M	н	\$121,000	P	0	1	90-95	
	Combination with Biodegradable	D	M	H	\$79,000	P	0	1	85-90	

- Hydromulch (BFM+) Straw Mulch
- = 90-95% = 90-95%
- Erosion Control Blankets = 85-95%

* Note that Jute Mesh is 65-70% WHY?


Longevity and Duration of Need

Erosion Control BMP Selection Criteria

- Environmental Considerations – only biodegradable materials allowed
- Soil Surface rocky, well-groomed, caliche

Erosion Control BMP Selection Criteria

What if can't trench for silt fence?

Hwy 101 Windsor CA

 DFW Warden arrested CalTrans RE and Contractor

 Finally agreed to Compost Berms in lieu of silt fence

 Berm doesn't need removal

Review of This Module

- The Selection of effective BMPs is dependent on many variables.
- It is very complicated, like brain surgery
- Planning for EC Minimizing the exposure of DSA is the "name of the game"
- Perimeter Controls refer to the areas where pollutants can leave construction site, NOT the physical boundary.

After 24 days seeded w/ Annual Rye (BAD)

The remainder of this Course will focus on Erosion and Sediment Control BMPs

Compost Berms, Compost Socks and Compost Blankets

Compost Berm and Blanket - 8" in 4 hr storm

Compost and 8" storm

