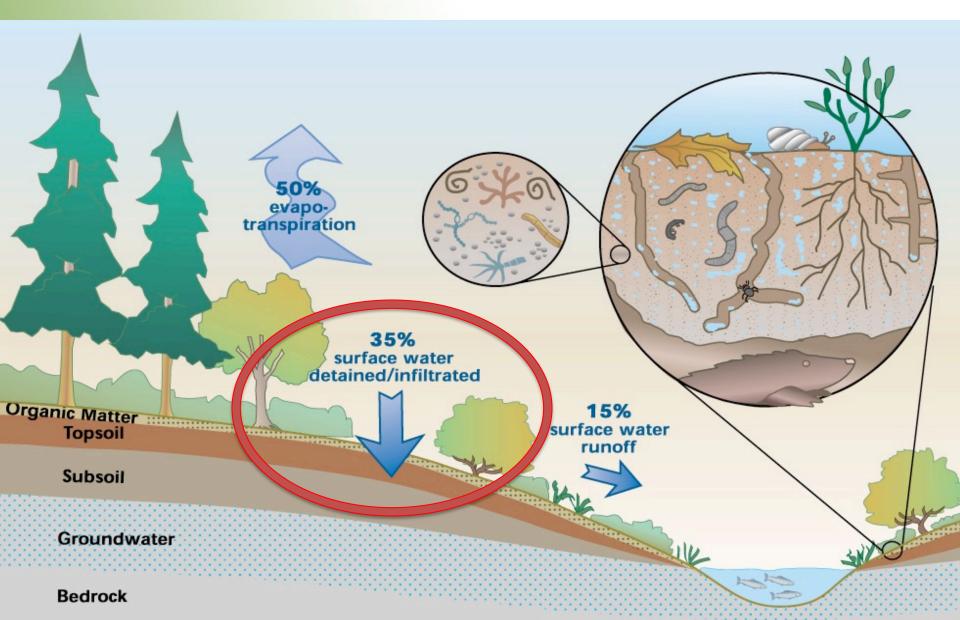

# Improving Storm Water Quality through Compost Filter Socks




Director of Research and Technical Services Filtrexx International

#### Land Use = Hydrology = Pollutant Load = Water Impairment



#### **Biomimicry - Natural Biofiltration**



#### **Research** Literature



- •Faucette, B., F. Cardoso, W. Mulbry, P. Millner. 2013. Performance of compost filtration practice for green infrastructure stormwater applications. Water Environment Research. 85:9: 806-814.
- •Faucette, B., J. Governo, R. Tyler, G. Gigley, C.F. Jordan, and B.G. Lockaby. 2009. Performance of compost filter socks conventional sediment control barriers used for perimeter control on construction sites. Journal of Soil and Water Conservation. 64:1:81-88.
- •Faucette, L. B., K. A. Sefton, A. M. Sadeghi, R. A. Rowland. 2008. Sediment and phosphorus removal from simulated storm runoff with compost filter socks and silt fence. Journal of Soil and Water Conservation. 63:4:257-264.
- •Keener, H., B. Faucette, and M. Klingman. 2007. Flow-through rates and evaluation of solids separation of compost filter socks vs. silt fence in sediment control applications. Journal of Environmental Quality. 36:3:742-752.
- •Faucette, L. Britt, J. Governo, C.F. Jordan, B. G Lockaby, H. F. Carino, and R. Governo. 2007. Erosion control and storm water quality from straw with pam, mulch, and compost blankets of varying particle sizes. Journal of Soil and Water Conservation. 62:6: 404-413.
- •Faucette B, C. Jordan, M. Risse, M. Cabrera, D. Coleman, L. West. 2005. Evaluation of Storm Water from Compost and Conventional Erosion Control Practices in Construction Activities. Journal of Soil and Water Conservation. 60:6: 288-297.

# **Ecosystem Services Technical Publications**



# Federal & State Agency Approval

- US Environmental Protection Agency (EPA) National Menu of BMPs
- USDA Natural Resources Conservation Service (NRCS)
- US Army Corp of Engineers
- American Association of State Highway Transportation Officials (AASHTO)
- US Composting Council (USCC)
- Nearly all State EPA & DOT Agencies

#### **Compost-Based BMPs**

#### **Erosion & Sediment Control**

- 1. Perimeter Control
- 2. Inlet Protection
- 3. Ditch Check
- 4. Filter Ring/Concrete washout
- 5. Slope Interruption
- 6. Runoff Diversion
- 7. Vegetated Cover
- 8. Erosion Control Blanket
- 9. Sediment Trap
- 10. Pond Riser Pipe Filter

#### Low Impact Development

- 11. Runoff Control Blanket
- 12. Vegetated Filter Strip
- 13. Engineered Soil
- 14. Channel Liner
- 15. Streambank Stabilization
- 16. Biofiltration System
- 17. Bioretention System
- 18. Green Roof System
- 19. Living Wall
- 20. Green Retaining Wall
- 21. Vegetated Rip Rap
- 22. Level Spreader
- 23. Green Gabion
- 24. Bioswale













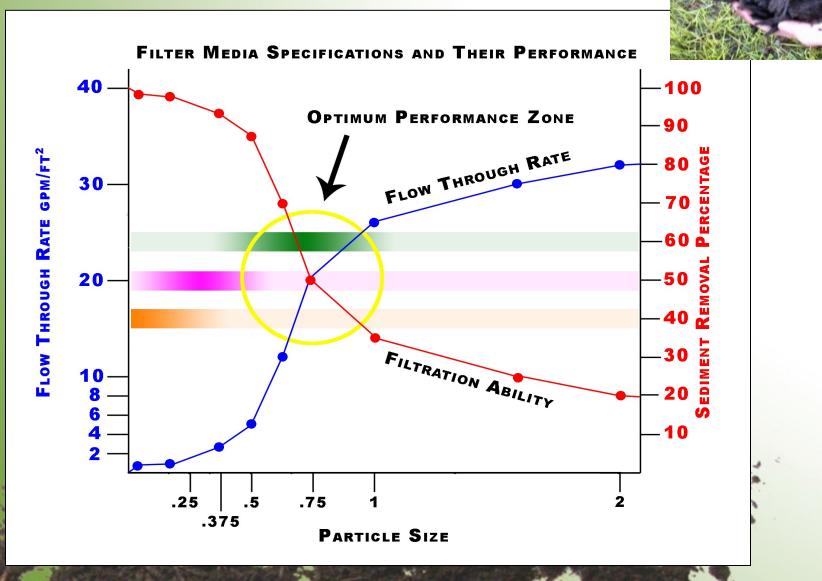






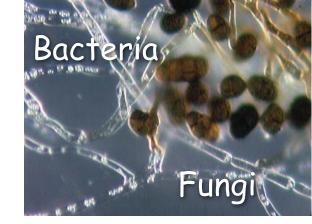
# **Compost Types**

#### **Biofilter** Media


Designed for Optimum
Filtration & Hydraulic-flow

#### EC Blanket Media

 Designed for Optimum Water Absorption & Plant Growth




#### **Particle Size Specifications**



# Compost Biofilter 3-Way Biofiltration

Physical



- Traps sediment in matrix of varying pore spaces and sizes
- Chemical
  - Binds and adsorbs pollutants in storm runoff
- Biological

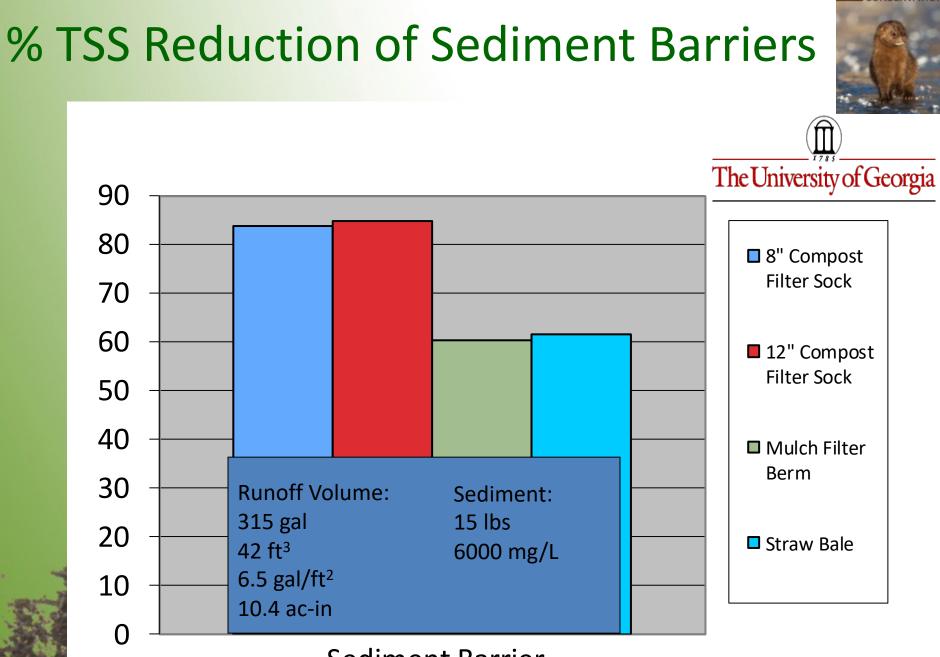
Degrades various compounds with bacteria and fungi



**Sediment Summary** 



# % Reduction of TSS & Turbidity


| Treatment           | TSS | Turbidity |  |  |
|---------------------|-----|-----------|--|--|
| Silt Fence          | 67  | 52        |  |  |
| Compost Filter Sock | 78  | 63        |  |  |

\* Based on rainfall of 3.0 in/hr for 30 min; runoff sediment concentration (sandy clay loam) of 70,000 mg/L.

# **TS Reduction of Sediment Barriers**

| San Diego State<br>University | Runoff Exposure                                   | Sediment<br>Exposure                             | Removal |
|-------------------------------|---------------------------------------------------|--------------------------------------------------|---------|
| Compost<br>Filter Sock        | •260 gal<br>•1.7 g/ft <sup>2</sup><br>•2.75 ac-in | •850 lbs<br>•150 lbs/ft <sup>2</sup><br>•125 t/a | 77%     |
| Straw<br>Wattle               | •260 gal<br>•1.7 g/ft <sup>2</sup><br>•2.75 ac-in | •850 lbs<br>•150 lbs/ft <sup>2</sup><br>•125 t/a | 59%     |

ASTM D-6459



**Sediment Barrier** 

#### **Stormwater Pollutant Removal**

|                           | TSS | Turbidity | Total N | NH4-N | Total P | Total coli. | E. coli. | Cu, Cd, Cr,<br>Ni, Pb, Zn | Oil | Diesel |
|---------------------------|-----|-----------|---------|-------|---------|-------------|----------|---------------------------|-----|--------|
| Compost<br>Filter<br>Sock | 80% | 63%       | 35%     | 54%   | 60%     | 98%         | 98%      | 37- 78%                   | 99% | 99%    |



# Natural Fiber/Biodegradable Mesh

#### What?

A natural, biodegradable mesh made from wood fiber yarns, creating a 100% natural, biodegradable erosion and sediment control product.

#### Why?

Reduce petroleum based products, microplastics, materials in landfills, labor costs to remove products and materials at the end of projects, wildlife entrapment, landscape equipment entanglement, and materials and products not compatible with the permanent or natural landscape.



#### The Sustainable BMP

- 100% Recycled (compost)
- Bio-based, organic materials
- Locally manufactured
- Reduces Carbon Footprint
- Uses Natural Principles (Biomimicry)



RODNEY W. TYLER ALEXANDER MARKS DR. BRITT FAUCETTE

THE DESIGN MANUAL FOR GREEN INFRASTRUCTURE AND LOW IMPACT DEVELOPMENT

High Performance

#### Summary of Key Advantages for Compost Filter Socks

- Natural, biodegradable, can/should be left on site good for soil quality and eliminates removal & disposal costs;
- Natural, biodegradable mesh cotton, wood fiber;
- High flow and high pollutant removal performance;
- Not required to be trenched in or rope lash-over;
- Variety of sizes 5 in, 8 in, 12 in, 18 in, 24 in diameter;
- Versatile: perimeter control, slope interruption, check dam, inlet protection, stockpile protection, sediment trap, post-construction stormwater treatment.



#### Dr. Britt Faucette, PhD, CPESC, LEED AP

Director of Research, Technical Services, and Sustainability

**Filtrexx International** 

britt.faucette@filtrexx.com

404-687-8393

