

Sheet Flow to Shallow Concentrated Flow Doug Williams, PE

November 14, 2023

What's the difference?

Copyright © by Doug Williams

Sheet Flow

- Storm water in a thin layer, resembling thin film or "sheet"
- Slow Flow
- Not in distinct channels
- NRCS defines the transition point of sheet flow to shallow concentrated flow when depth reaches 1-inch

Shallow Concentrated Flow

- Concentrated storm water flow in a defined, yet shallow, path
- Flow is deeper and flows faster than sheet flow
- Flow depths of 0.1 to 0.5 feet
- Causes rill erosion

Flow Transition & Erosive Potential

- Sheet flow erosion is relatively low, transporting finer sediment from surface
- Shallow concentrated flow is more erosive due to increased depth and flow velocities
- Shallow concentrated flow transports coarser sediment

Estimating Sheet Flow Travel Length

Horton's Average Overland Flow Length

(W.O. Ree. A Progress Report on Overland Flow Studies. 1963)

- Horton developed equation: L=1/(2Dd)
 - Where:
 - L is the sheet flow travel length
 - Dd is the sum of stream lengths for the watershed divided by the area of the watershed
- Measured stream lengths using aerial imagery.
- Σ Stream Lengths=48,900', Area=206 acres, Avg Sheet Flow Length=92'

Manning n and the Overland Flow Equation (Ree, et al. 1977)

- Average sheet flow length estimated by:
 - Length = Watershed Area / (2 * Σ Stream Lengths)
- Delineated and measured stream lengths using topographical contour maps
- Sheet flow lengths ranged from 197' to 228' (3 watersheds)

Roughness Coefficients for Routing Surface Runoff (Emmett, W.)

- 1983:
 - Test plots varied from 10-20m, simulated precipitation from 5-10 cm/hr.
 - Roughness values developed for sheet flow, before concentrated flow
 - High Manning's n results in unreasonable depth for lengths extended to 300 ft
- 1986:
 - Excessive depths would not be encountered for slope lengths of 150-300 ft

WinTR-55 User Manual

(NRCS, 2009)

- Sheet flow originally limited to 300 ft or less
- "Sheet flow for 300 feet is very unusual because the surface and the corresponding flow would need to be extremely uniform."

Woods:≌

(1986)

Light underbrush

Dense underbrush

• Sheet flow generally becomes concentrated after 100 ft, which became the new limit for WinTR-55

Table 3-1 Roughness coefficients (Manning's n) for sheet flow Surface description n 1∕ Smooth surfaces (concrete, asphalt, gravel, or bare soil). 0.011 Fallow (no residue) 0.05Cultivated soils: 0.06 Residue cover ≤20% 0.17Residue cover >20% Grass: 0.15Short grass prairie. 0.24Dense grasses 2/. Bermudagrass 0.41Range (natural) 0.13

The n values are a composite of information compiled by Engman

² Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

³ When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

0.40

0.80

From TR-55, Chapter 3

Assessment of Kinematic Wave Time of Concentration (McCuen & Spiess. 1995)

- Kinematic wave assumptions may no longer be valid if flow length alone is used as the limiting factor
- High roughness coefficient and/or flat slopes will generally result in overprediction of sheet flow length
- Factors should also include Manning's n and slope
- $nL/\sqrt{s} \le 100$

The Hydraulics of Overland Flow on Hillslopes (Emmett, W. 1970)

- 7 test plots, 7' wide
- Varied slopes from 2.9 to 33%
- Shallow slopes micro-depressions dictated concentrate flow paths, but did not so much on steeper slopes
- Flow rarely occurred as uniform sheet flow for natural ground surface
- Sheet flow lengths limited to <50'

NRCS National Engineering Handbook, Part 630, Chapter 15 (May 2010)

Table 8-4 Allowable velocities

Channel material	Mean channel velocity	
	(ft/s)	(m/s)
Fine sand	2.0	0.61
Coarse sand	4.0	1.22
Fine gravel	6.0	1.83
Earth		
Sandy silt	2.0	0.61
Silt clay	3.5	1.07
Clay	6.0	1.83
Grass-lined earth (slopes <5%)		
Bermudagrass		
Sandy silt	6.0	1.83
Silt clay	8.0	2.44
Kentucky bluegrass		
Sandy silt	5.0	1.52
Silt clay	7.0	2.13
Poor rock (usually sedimentary)	10.0	3.05
Soft sandstone	8.0	2.44
Soft shale	3.5	1.07
Good rock (usually igneous or hard metamorphic)	20.0	6.08

NRCS National Engineering Handbook, Part 654, Chapter 8 (August 2007)

Design Equations

Copyright © by Doug Williams

Time of Concentration Kinematic Wave Equation

 $T_c = \frac{0.93}{i^{0.4}} \left(\frac{nL}{\sqrt{s}}\right)^{0.6}$

Where:

 T_c is the time of concentration i is the rainfall intensity n is the overland roughness coefficient L is the flow length S is the slope

Chart 1: Sonoma County Water Agency IDF Curve (SCWA, 1983)

Estimate Sheet Flow Length

$$\frac{nL}{\sqrt{s}} \le 100$$
$$L = \frac{100\sqrt{s}}{n}$$

Example 1:

Should we design for sheet flow or shallow concentrated flow?

L = 300 feet, n = 0.41, s = 0.02 ft/ft

$$\frac{nL}{\sqrt{s}} \le 100$$

$$\frac{nL}{\sqrt{s}} = \frac{0.41 * 300}{\sqrt{0.02}} = 869.74$$

Example 2:

At what interval should we space flow interception swales?

n = 0.41, s = 0.10 ft/ft

$$L = \frac{100\sqrt{s}}{n}$$

$$L = \frac{100\sqrt{s}}{n} = \frac{100\sqrt{0.10}}{0.41} = 77.13 \, feet$$

But....

What if we have a compound slope (varying slopes/lengths)? 1st Slope 2nd Slope Final Slope Copyright © by Doug Williams

Compound Slopes

$$\frac{nL}{\sqrt{s}} = 100$$
$$\frac{n_f L_f}{\sqrt{s_f}} + \frac{n_1 L_1}{\sqrt{s_1}} + \dots + \frac{n_n L_n}{\sqrt{s_n}} = 100$$
$$L_f = \left(100 - \frac{n_1 L_1}{\sqrt{s_1}} - \dots - \frac{n_n L_n}{\sqrt{s_n}}\right) \frac{\sqrt{s_f}}{n_f}$$

Where:

 L_f is the final slope length L_1 is the first slope length L_n is the nth slope length n_f is the final roughness coefficient n_1 is the first roughness coefficient n_n is the nth roughness coefficient s_f is the final slope s_1 is the first slope s_n is the nth slope

Example 3:

We have 3 slope sections with varying slope parameters:

- Slope 1: L=10 ft, n=0.15, s=0.02 ft/ft
- Slope 2: L=10 ft, n=0.41, s=0.06 ft/ft
- Slope 3: n=0.41, s=0.10 ft/ft

$$L_{f} = \left(100 - \frac{L_{1}n_{1}}{\sqrt{s_{1}}} - \frac{L_{2}n_{2}}{\sqrt{s_{2}}}\right) \frac{\sqrt{s_{f}}}{n_{f}} = \left(100 - \frac{10*0.15}{\sqrt{0.02}} - \frac{10*0.41}{\sqrt{0.06}}\right) \frac{\sqrt{0.10}}{0.41}$$
$$L_{f} = 56 \ ft$$

Questions? Email: dwilliams@gotoetc.com

Mahalo Nui Loa

Copyright © by Doug Williams

References:

McCuen, R. H., & Spiess, J. M. (1995). Assessment of Kinematic Wave Time of concentration. *Journal of Hydraulic Engineering*, 121(3), 256–266. https://doi.org/10.1061/(asce)0733-9429(1995)121:3(256)

Horton, R. E., Leach, H. R., & Van Vliet, R. (1934). Laminar sheet-flow. *Transactions, American Geophysical Union*, 15(2), 393. https://doi.org/10.1029/tr015i002p00393

Emmett, W. W. (1970). The hydraulics of overland flow on Hillslopes. *Professional Paper*. https://doi.org/10.3133/pp662a

Merkel, W. (2001). References on time of concentration with respect to sheet flow. *Professional Paper*. https://www.hydrocad.net/pdf/SheetFlowRefs.pdf

Sonoma County Office of the Agricultural Commissioner. Sheetflow calculation reference sheet for vineyard/orchard development. https://sonomacounty.ca.gov/Main%20County%20Site/General/Sonoma/Sample%20Dept/Divisions%20and%20Sections/Agriculture/Ordinances/ GMO__2/_Documents/sheetflow_reference_sheet.pdf

USDA. 1986. Urban hydrology for small watershed – Technical Release 55. United States Department of Agriculture. https://www.nrc.gov/docs/ML1421/ML14219A437.pdf

USDA. 2009. Small watershed hydrology – WinTR-55 User Guide. United States Department of Agriculture. https://irrigationtoolbox.com/NEH/UserGuides/WinTR-55_01-09.pdf

Copyright © by Doug Williams